Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing.

نویسندگان

  • F G Mitri
  • Z E A Fellah
چکیده

The present analysis investigates the (axial) acoustic radiation force induced by a quasi-Gaussian beam centered on an elastic and a viscoelastic (polymer-type) sphere in a nonviscous fluid. The quasi-Gaussian beam is an exact solution of the source free Helmholtz wave equation and is characterized by an arbitrary waist w₀ and a diffraction convergence length known as the Rayleigh range z(R). Examples are found where the radiation force unexpectedly approaches closely to zero at some of the elastic sphere's resonance frequencies for kw₀≤1 (where this range is of particular interest in describing strongly focused or divergent beams), which may produce particle immobilization along the axial direction. Moreover, the (quasi)vanishing behavior of the radiation force is found to be correlated with conditions giving extinction of the backscattering by the quasi-Gaussian beam. Furthermore, the mechanism for the quasi-zero force is studied theoretically by analyzing the contributions of the kinetic, potential and momentum flux energy densities and their density functions. It is found that all the components vanish simultaneously at the selected ka values for the nulls. However, for a viscoelastic sphere, acoustic absorption degrades the quasi-zero radiation force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Buckling and Vibrations of a Viscoelastic Beam under Distributed Lateral and Axial Loads

In this paper, based on Kelvin and Linear Standard Solid models, dynamic response and the buckling load of a viscoelastic beam under  lateral and axial loads have been determined. The governing equations have been extracted using Euler  and Timoshenko theories and their analytical solutions have been obtained by using the eigenfunctions expansion method. Buckling load have been calculated by us...

متن کامل

Semi-analytical Approach for Free Vibration Analysis of Variable Cross-Section Beams Resting on Elastic Foundation and under Axial Force

in this paper, free vibration of an Euler-Bernoulli beam with variable cross-section resting on elastic foundation and under axial tensile force is considered. Beam’s constant height and exponentially varying width yields variable cross-section. The problem is handled for three different boundary conditions: clamped-clamped, simply supported-simply supported and clamp-free beams. First, the equ...

متن کامل

Elastic-Plastic Analysis of Bending Moment – Axial Force Interaction in Metallic Beam of T-Section

This study derives kinematic admissible bending moment – axial force (M-P) interaction relations for mild steel by considering elastic-plastic idealizations. The interaction relations can predict strains, which is not possible in a rigid perfectly plastic idealization. The relations are obtained for all possible cases pertaining to the locations of neutral axis. One commercial rolled steel T-se...

متن کامل

Nonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation

The aim of this study is the investigation of the large amplitude deflection of an Euler-Bernoulli beam subjected to an axial load on a viscoelastic foundation with the strong damping. In order to achieve this purpose, the beam nonlinear frequency has been calculated by homotopy perturbation method (HPM) and Hamilton Approach (HA) and it was compared by the exact solutions for the different bou...

متن کامل

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasonics

دوره 54 1  شماره 

صفحات  -

تاریخ انتشار 2014